Copied to
clipboard

G = C42×He3order 432 = 24·33

Direct product of C42 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C42×He3, C1222C3, C3.1C122, (C3×C12)⋊6C12, (C6×C12).16C6, C6.10(C6×C12), C324(C4×C12), C12.13(C3×C12), (C2×C6).24C62, (C4×C12).6C32, C62.31(C2×C6), C22.2(C22×He3), (C22×He3).36C22, C2.1(C2×C4×He3), (C2×C4×He3).16C2, (C2×C4).4(C2×He3), (C3×C6).26(C2×C12), (C2×C12).28(C3×C6), (C2×He3).35(C2×C4), SmallGroup(432,201)

Series: Derived Chief Lower central Upper central

C1C3 — C42×He3
C1C3C6C2×C6C62C22×He3C2×C4×He3 — C42×He3
C1C3 — C42×He3
C1C4×C12 — C42×He3

Generators and relations for C42×He3
 G = < a,b,c,d,e | a4=b4=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 285 in 165 conjugacy classes, 105 normal (9 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C32, C12, C12, C2×C6, C2×C6, C42, C3×C6, C2×C12, C2×C12, He3, C3×C12, C62, C4×C12, C4×C12, C2×He3, C6×C12, C4×He3, C22×He3, C122, C2×C4×He3, C42×He3
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C32, C12, C2×C6, C42, C3×C6, C2×C12, He3, C3×C12, C62, C4×C12, C2×He3, C6×C12, C4×He3, C22×He3, C122, C2×C4×He3, C42×He3

Smallest permutation representation of C42×He3
On 144 points
Generators in S144
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 107 38 101)(2 108 39 102)(3 105 40 103)(4 106 37 104)(5 44 95 137)(6 41 96 138)(7 42 93 139)(8 43 94 140)(9 22 54 51)(10 23 55 52)(11 24 56 49)(12 21 53 50)(13 91 69 136)(14 92 70 133)(15 89 71 134)(16 90 72 135)(17 48 65 141)(18 45 66 142)(19 46 67 143)(20 47 68 144)(25 98 114 129)(26 99 115 130)(27 100 116 131)(28 97 113 132)(29 117 78 86)(30 118 79 87)(31 119 80 88)(32 120 77 85)(33 126 74 61)(34 127 75 62)(35 128 76 63)(36 125 73 64)(57 110 123 81)(58 111 124 82)(59 112 121 83)(60 109 122 84)
(9 25 109)(10 26 110)(11 27 111)(12 28 112)(13 67 125)(14 68 126)(15 65 127)(16 66 128)(17 62 71)(18 63 72)(19 64 69)(20 61 70)(21 97 121)(22 98 122)(23 99 123)(24 100 124)(33 133 47)(34 134 48)(35 135 45)(36 136 46)(49 131 58)(50 132 59)(51 129 60)(52 130 57)(53 113 83)(54 114 84)(55 115 81)(56 116 82)(73 91 143)(74 92 144)(75 89 141)(76 90 142)
(1 78 139)(2 79 140)(3 80 137)(4 77 138)(5 105 88)(6 106 85)(7 107 86)(8 108 87)(9 109 25)(10 110 26)(11 111 27)(12 112 28)(13 67 125)(14 68 126)(15 65 127)(16 66 128)(17 62 71)(18 63 72)(19 64 69)(20 61 70)(21 121 97)(22 122 98)(23 123 99)(24 124 100)(29 42 38)(30 43 39)(31 44 40)(32 41 37)(33 133 47)(34 134 48)(35 135 45)(36 136 46)(49 58 131)(50 59 132)(51 60 129)(52 57 130)(53 83 113)(54 84 114)(55 81 115)(56 82 116)(73 91 143)(74 92 144)(75 89 141)(76 90 142)(93 101 117)(94 102 118)(95 103 119)(96 104 120)
(1 109 136)(2 110 133)(3 111 134)(4 112 135)(5 24 127)(6 21 128)(7 22 125)(8 23 126)(9 36 139)(10 33 140)(11 34 137)(12 35 138)(13 107 122)(14 108 123)(15 105 124)(16 106 121)(17 119 131)(18 120 132)(19 117 129)(20 118 130)(25 46 78)(26 47 79)(27 48 80)(28 45 77)(29 114 143)(30 115 144)(31 116 141)(32 113 142)(37 83 90)(38 84 91)(39 81 92)(40 82 89)(41 53 76)(42 54 73)(43 55 74)(44 56 75)(49 62 95)(50 63 96)(51 64 93)(52 61 94)(57 70 102)(58 71 103)(59 72 104)(60 69 101)(65 88 100)(66 85 97)(67 86 98)(68 87 99)

G:=sub<Sym(144)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,107,38,101)(2,108,39,102)(3,105,40,103)(4,106,37,104)(5,44,95,137)(6,41,96,138)(7,42,93,139)(8,43,94,140)(9,22,54,51)(10,23,55,52)(11,24,56,49)(12,21,53,50)(13,91,69,136)(14,92,70,133)(15,89,71,134)(16,90,72,135)(17,48,65,141)(18,45,66,142)(19,46,67,143)(20,47,68,144)(25,98,114,129)(26,99,115,130)(27,100,116,131)(28,97,113,132)(29,117,78,86)(30,118,79,87)(31,119,80,88)(32,120,77,85)(33,126,74,61)(34,127,75,62)(35,128,76,63)(36,125,73,64)(57,110,123,81)(58,111,124,82)(59,112,121,83)(60,109,122,84), (9,25,109)(10,26,110)(11,27,111)(12,28,112)(13,67,125)(14,68,126)(15,65,127)(16,66,128)(17,62,71)(18,63,72)(19,64,69)(20,61,70)(21,97,121)(22,98,122)(23,99,123)(24,100,124)(33,133,47)(34,134,48)(35,135,45)(36,136,46)(49,131,58)(50,132,59)(51,129,60)(52,130,57)(53,113,83)(54,114,84)(55,115,81)(56,116,82)(73,91,143)(74,92,144)(75,89,141)(76,90,142), (1,78,139)(2,79,140)(3,80,137)(4,77,138)(5,105,88)(6,106,85)(7,107,86)(8,108,87)(9,109,25)(10,110,26)(11,111,27)(12,112,28)(13,67,125)(14,68,126)(15,65,127)(16,66,128)(17,62,71)(18,63,72)(19,64,69)(20,61,70)(21,121,97)(22,122,98)(23,123,99)(24,124,100)(29,42,38)(30,43,39)(31,44,40)(32,41,37)(33,133,47)(34,134,48)(35,135,45)(36,136,46)(49,58,131)(50,59,132)(51,60,129)(52,57,130)(53,83,113)(54,84,114)(55,81,115)(56,82,116)(73,91,143)(74,92,144)(75,89,141)(76,90,142)(93,101,117)(94,102,118)(95,103,119)(96,104,120), (1,109,136)(2,110,133)(3,111,134)(4,112,135)(5,24,127)(6,21,128)(7,22,125)(8,23,126)(9,36,139)(10,33,140)(11,34,137)(12,35,138)(13,107,122)(14,108,123)(15,105,124)(16,106,121)(17,119,131)(18,120,132)(19,117,129)(20,118,130)(25,46,78)(26,47,79)(27,48,80)(28,45,77)(29,114,143)(30,115,144)(31,116,141)(32,113,142)(37,83,90)(38,84,91)(39,81,92)(40,82,89)(41,53,76)(42,54,73)(43,55,74)(44,56,75)(49,62,95)(50,63,96)(51,64,93)(52,61,94)(57,70,102)(58,71,103)(59,72,104)(60,69,101)(65,88,100)(66,85,97)(67,86,98)(68,87,99)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,107,38,101)(2,108,39,102)(3,105,40,103)(4,106,37,104)(5,44,95,137)(6,41,96,138)(7,42,93,139)(8,43,94,140)(9,22,54,51)(10,23,55,52)(11,24,56,49)(12,21,53,50)(13,91,69,136)(14,92,70,133)(15,89,71,134)(16,90,72,135)(17,48,65,141)(18,45,66,142)(19,46,67,143)(20,47,68,144)(25,98,114,129)(26,99,115,130)(27,100,116,131)(28,97,113,132)(29,117,78,86)(30,118,79,87)(31,119,80,88)(32,120,77,85)(33,126,74,61)(34,127,75,62)(35,128,76,63)(36,125,73,64)(57,110,123,81)(58,111,124,82)(59,112,121,83)(60,109,122,84), (9,25,109)(10,26,110)(11,27,111)(12,28,112)(13,67,125)(14,68,126)(15,65,127)(16,66,128)(17,62,71)(18,63,72)(19,64,69)(20,61,70)(21,97,121)(22,98,122)(23,99,123)(24,100,124)(33,133,47)(34,134,48)(35,135,45)(36,136,46)(49,131,58)(50,132,59)(51,129,60)(52,130,57)(53,113,83)(54,114,84)(55,115,81)(56,116,82)(73,91,143)(74,92,144)(75,89,141)(76,90,142), (1,78,139)(2,79,140)(3,80,137)(4,77,138)(5,105,88)(6,106,85)(7,107,86)(8,108,87)(9,109,25)(10,110,26)(11,111,27)(12,112,28)(13,67,125)(14,68,126)(15,65,127)(16,66,128)(17,62,71)(18,63,72)(19,64,69)(20,61,70)(21,121,97)(22,122,98)(23,123,99)(24,124,100)(29,42,38)(30,43,39)(31,44,40)(32,41,37)(33,133,47)(34,134,48)(35,135,45)(36,136,46)(49,58,131)(50,59,132)(51,60,129)(52,57,130)(53,83,113)(54,84,114)(55,81,115)(56,82,116)(73,91,143)(74,92,144)(75,89,141)(76,90,142)(93,101,117)(94,102,118)(95,103,119)(96,104,120), (1,109,136)(2,110,133)(3,111,134)(4,112,135)(5,24,127)(6,21,128)(7,22,125)(8,23,126)(9,36,139)(10,33,140)(11,34,137)(12,35,138)(13,107,122)(14,108,123)(15,105,124)(16,106,121)(17,119,131)(18,120,132)(19,117,129)(20,118,130)(25,46,78)(26,47,79)(27,48,80)(28,45,77)(29,114,143)(30,115,144)(31,116,141)(32,113,142)(37,83,90)(38,84,91)(39,81,92)(40,82,89)(41,53,76)(42,54,73)(43,55,74)(44,56,75)(49,62,95)(50,63,96)(51,64,93)(52,61,94)(57,70,102)(58,71,103)(59,72,104)(60,69,101)(65,88,100)(66,85,97)(67,86,98)(68,87,99) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,107,38,101),(2,108,39,102),(3,105,40,103),(4,106,37,104),(5,44,95,137),(6,41,96,138),(7,42,93,139),(8,43,94,140),(9,22,54,51),(10,23,55,52),(11,24,56,49),(12,21,53,50),(13,91,69,136),(14,92,70,133),(15,89,71,134),(16,90,72,135),(17,48,65,141),(18,45,66,142),(19,46,67,143),(20,47,68,144),(25,98,114,129),(26,99,115,130),(27,100,116,131),(28,97,113,132),(29,117,78,86),(30,118,79,87),(31,119,80,88),(32,120,77,85),(33,126,74,61),(34,127,75,62),(35,128,76,63),(36,125,73,64),(57,110,123,81),(58,111,124,82),(59,112,121,83),(60,109,122,84)], [(9,25,109),(10,26,110),(11,27,111),(12,28,112),(13,67,125),(14,68,126),(15,65,127),(16,66,128),(17,62,71),(18,63,72),(19,64,69),(20,61,70),(21,97,121),(22,98,122),(23,99,123),(24,100,124),(33,133,47),(34,134,48),(35,135,45),(36,136,46),(49,131,58),(50,132,59),(51,129,60),(52,130,57),(53,113,83),(54,114,84),(55,115,81),(56,116,82),(73,91,143),(74,92,144),(75,89,141),(76,90,142)], [(1,78,139),(2,79,140),(3,80,137),(4,77,138),(5,105,88),(6,106,85),(7,107,86),(8,108,87),(9,109,25),(10,110,26),(11,111,27),(12,112,28),(13,67,125),(14,68,126),(15,65,127),(16,66,128),(17,62,71),(18,63,72),(19,64,69),(20,61,70),(21,121,97),(22,122,98),(23,123,99),(24,124,100),(29,42,38),(30,43,39),(31,44,40),(32,41,37),(33,133,47),(34,134,48),(35,135,45),(36,136,46),(49,58,131),(50,59,132),(51,60,129),(52,57,130),(53,83,113),(54,84,114),(55,81,115),(56,82,116),(73,91,143),(74,92,144),(75,89,141),(76,90,142),(93,101,117),(94,102,118),(95,103,119),(96,104,120)], [(1,109,136),(2,110,133),(3,111,134),(4,112,135),(5,24,127),(6,21,128),(7,22,125),(8,23,126),(9,36,139),(10,33,140),(11,34,137),(12,35,138),(13,107,122),(14,108,123),(15,105,124),(16,106,121),(17,119,131),(18,120,132),(19,117,129),(20,118,130),(25,46,78),(26,47,79),(27,48,80),(28,45,77),(29,114,143),(30,115,144),(31,116,141),(32,113,142),(37,83,90),(38,84,91),(39,81,92),(40,82,89),(41,53,76),(42,54,73),(43,55,74),(44,56,75),(49,62,95),(50,63,96),(51,64,93),(52,61,94),(57,70,102),(58,71,103),(59,72,104),(60,69,101),(65,88,100),(66,85,97),(67,86,98),(68,87,99)]])

176 conjugacy classes

class 1 2A2B2C3A3B3C···3J4A···4L6A···6F6G···6AD12A···12X12Y···12DP
order1222333···34···46···66···612···1212···12
size1111113···31···11···13···31···13···3

176 irreducible representations

dim111111333
type++
imageC1C2C3C4C6C12He3C2×He3C4×He3
kernelC42×He3C2×C4×He3C122C4×He3C6×C12C3×C12C42C2×C4C4
# reps1381224962624

Matrix representation of C42×He3 in GL5(𝔽13)

80000
01000
001200
000120
000012
,
50000
08000
001200
000120
000012
,
90000
03000
00100
00930
001209
,
10000
01000
00300
00030
00003
,
30000
09000
00920
00041
000100

G:=sub<GL(5,GF(13))| [8,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[5,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[9,0,0,0,0,0,3,0,0,0,0,0,1,9,12,0,0,0,3,0,0,0,0,0,9],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[3,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,2,4,10,0,0,0,1,0] >;

C42×He3 in GAP, Magma, Sage, TeX

C_4^2\times {\rm He}_3
% in TeX

G:=Group("C4^2xHe3");
// GroupNames label

G:=SmallGroup(432,201);
// by ID

G=gap.SmallGroup(432,201);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,252,512,1109]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
×
𝔽